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Abstract. The multi resolution wavelet expansion is used as a simplify
ing mechanism for the parametric analysis of complicated highly corre
lated random fields. A previously developed approximation method is
applied to simulated statistically self-similar random fields for further
evaluation. This approach can be considered as a simplifying method for
random variable transformations for some important applications. The
approach overcomes many of the difficulties associated with predicting
the output field probability distribution function resulting from passing a
non-Gaussian random process through a linear network. Here, the mul
tiresolution wavelet expansion can be considered as a linear network.
The ideas are illustrated with three related simulated noise fields: a white
noise input field distributed proportional to a zero order hyperbolic Bessel
function and two 1/t noise processes resulting from filtering the white
noise process. The fields are analyzed with an orthogonal multi resolution
wavelet expansion. The expansion components are studied with para
metric analysis, where the probability models are all derived from one
family of functions. In addition, the study illustrates some interesting non
intuitive statistical properties of the filtered fields. © 1999 Society of Photo

Optical Instrumentation Engineers. [80091-3286(99)01809-7]
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1 Introduction

This work is an outgrowth of previous multiresolution sta
tistical analysis applied to digital mammographyl-4 (DM).
The current thrust of our mammography work is to develop
a firm grasp of the statistical properties of normal tissue
with the goal of developing reliable automated methods for
the detection of clinically normal images. This is an impor
tant application in DM when considering (1) the majority
of signal from a given image arises from normal tissue,
even when abnormalities are present, and (2) the vast ma
jority of mammograms are clinically normal, roughly 90%.
Often, mammograms have irregular multimodal gray scale
histograms and can be considered as highly correlated ran
dom fields that are considered too irregular or complicated
for parametric analysis. However, by reasonable approxi
mations, we have evidence indicating this assumption may
not always be correct. A growing body of work indicates
that mammograms, to some degree, can be considered as
statistically self-similar processes.4-7 The term self
similarity often implies fractal behavior. The work pre
sented here is a theoretical study of synthetic imagery gen
erated from a statistical understanding of mammograms
with the intent of gaining a better understanding of the
irregularities common to mammograms and verifying ini
tial findings.1-4

Fractal methods have become a popular analysis tool
used for characterizing image textures. The analysis usually

involves estimating the fractal dimension based on measur
ing some scale invariant property. Fractal applications in
clude the analysis of natural scenes, such as earth topogra
phy, trees, foliage, clouds, and astronomy data,S-13 the
study of radiographs for tissue and bone classification,4-7,14
and image compression. 15Similarly, fractal methods can be
used in detection problems such as finding man made ob
jects imbedded in natural backgrounds or edges. Often
these anomalies cause abrupt changes in the fractal
characterization.ll,16

Natural scene images consisting of various surfaces and
patterns often share a common property in that the associ
ated power spectra have similar behavior.9,13 That is, the
2-D power spectra drops off roughly as 1/f2{3, where {3 is a
positive parameter related to the fractal dimension. Noise
with this power spectrum form is often referred to as a 1/f

process, or 1/f noise, and is related to fractional Brownian
motion17under certain conditions. For this study, we use {3

as the parameter of interest to avoid confusion, rather than
the fractal dimension; the corresponding relationships with
the fractal processes and Brownian surfaces can be found
elsewhere.S,lS Qualitatively, larger {3 implies more image
irregularity. There is evidence9,13 for many natural scene
images {3= 1. This implies that the power is roughly dis
tributed evenly across the spectrum when viewed on a logz
scale (octave splitting). For mammograms in our database
{3= 1.5, implying more irregularity. There are many meth-
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10= (jo- Id + (11 - iz) + (f2- 13) + ... + (fl-l -II) +II'

(3)

3.2 Multiresolution Wavelet Expansion

Briefly, the multiresolution image expansion takes the form
of a sum of images given by the identity26

where the 11 image is the next coarser representation of 10
and iz is the next coarser approximation of 11 and so on.
The image that contains the difference information between
the successive Ij images (fj-l - Ij) is designated by dj,
thus

(2)

(4)

arbitrary gray value located at some arbitrary spatial loca
tion (x,y), k is a constant, So(j) is the FT of the output, or
simulation, process denoted by so(x,y), and H(j) is the
frequency domain transfer function with inverse FT
h(x,y), the impulse response function. Here we use capi
tals to indicate the Fourier domain. The s(x,y) simulation
method is discussed in Section 4. Explicitly, H(j) is given
by

Three simulations are generated and analyzed with multi
resolution method: case 1, the white noise process, s(x,y),

defined in Eq. (1) and used as the input for the 1/1 simula
tions; and cases 2 and 3, two III simulations that corre
spond to /3= 1.0 and /3= 1.5 in Eq. (2), respectively. The
latter case is modeled after the previous mammography
studies and shows irregular behavior. The fields are 2048
X2048 pixels with 16-bit accuracy.

We have used the model in Eq. (1) with Eq. (2) to ana
lyze mammograms,4 where s(x,y) is the unknown; this is
discussed further in Section 4. This development, of substi
tuting Eq. (2) into Eq. (1), can be taken as the 2-D gener
alization of an earlier approach24 used to analyze flicker
noise based on considering fractional order integration.
Wornell17 provides a detailed discussion of this earlier
work and how it relates to Brownian motion and fractional
calculus. A thorough treatment of fractional calculus is
given by Oldham and Spanier.2s We present one possible
2-D generalization of this earlier work in the Appendix.
Rather than just plow through Eq. (1), it is instructive to
explore the functional form of h(x,y), and work the opera
tion starting from the image domain in contrast to starting
in the Fourier domain. As demonstrated in the Appendix,
this alternative approach provides insight into the irregular
statistical properties often associated with mammograms
that is not apparent in Eqs. (1) and (2).

ods for measuring the fractal behavior of a given image in
addition to the power spectrum analysis, and the connection
among the various methods is not always clear. Several
methods and relationships are discussed
elsewhere.10,11,19-21

2 Current Study

In this paper, we present a multiresolution analysis of simu
lated 2-D 1/1 processes. The noise fields are generated by
driving stationary white noise, with a given parametric
probability distribution, through a linear filtering operation,
where the simulation input field statistical properties and
filter functional form are based on the analysis of high reso
lution mammograms.4 The intriguing aspect of the study is
that a stationary stochastic process is used as the input to a
linear filtering operation, and the output can be very irregu
lar with a multimodal gray value histogram for certain val
ues of /3. The basic idea is to generate random fields that
behave similar to that of mammograms and study the cor
responding multiresolution statistical properties. We found
that for certain bandlimited detection problems in DM, the
analysis of the wavelet expansion components can be used
as a simplifying mechanism. This approach is based on
analyzing the individual expansion components with simple
parametric approximations rather than the analysis of the
raw field. The work presented here is further demonstration
of this idea and can be considered as making inroads into
the more general problem: Determining the output field
probability density function (pdf) given a non-Gaussian
distributed random field as the input to a linear network.
For many cases, this problem is not trivial and cannot be
solved in closed form using standard random variable (RV)
transformation techniques. For instance, if we generate a
new RV by forming linear combinations of other RVs, with
different weighting coefficients, the corresponding new pdf
might be found providing that (a) the original distribution
parametric form is known; (b) in the general case, there are
not too many variates in the transform but less than enough
to use central limit theorem arguments; and (c) the variates
are uncorrelated and statistically independent. When we
consider the many operations involved with the wavelet
analysis, this problem is for all practical purposes too hard
to track for all but Gaussian input fields, although there are
some cases where prediction is possible. If the input is a
wideband process, or has a frequency spectrum much wider
than the network bandwidth, the output field will be ap
proximately Gaussian distributed.22This applies regardless
of input field pdf.

3 The 1/f Processes and Multiresolution
Analysis

3.1 1/t Generation

Fourier domain filtering is used to generate the simulations

(1)

where (jx ,fy) are two dimensional Cartesian frequency do
main coordinates. The inverse Fourier transform (FT) of
S(j), is t.'1esimulation input field, s(x,y), and is a white
noise process distributed proportional to a modified hyper
bolic Bessel function?3 p(z) =k7r-1ko(klzl), where z is an

The dj images, referred to as the detail images, are not
correlated in the sense that < d jd k) =0 for j =1=k, and are the
components of interest in this study. Smaller j indicates
finer detail and fj is a low resolution version of the raw
field. The wavelet analysis is performed with two dimen
sional separable convolutions using the symmlet basis with
12 coefficients,27where down sampling is applied in the
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Fig. 1 2048x2048 simulations and associated histograms for the three cases: (a) case 1 (top), the
raw ko distributed field; (b) case 2, the raw field filtered with a 1/( filter; and (c) case 3, the raw field

filtered with a 1/(1.5 filter. Note that somewhat irregular field and associated histogram for case 3.
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Fig. 2 Case 1: expansion components d1 to ds, top to bottom (left), respectively, and associated pdf
modeling (right). The empirical histograms (solid) are to be compared to the theoretical (crosses)
approximations. 512x512 pixel regions of interest are used for viewing purposes; although, all the
data are used for the analysis. Points have been skipped on theoretical plots to avoid confusion.
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Fig. 2 Continued.

where k and yare positive parameters. A theoretical deri
vation of Eq. (5) as related to the expansion components is
provided elsewhere.3 For the special case, y=N, the in
verse FT of (5) gives the desired pdf expression

band process (that is, from case 1). There are striking simi
larities with mammographic images in appearance and with
the irregular histogram for case 3.

The general characteristic function associated with both
the wavelet expansion component probability modeling and
the input field distribution is given by

forward (decomposition) transform and upsampling in the
inverse (expansion) transform. Each dj image is a result of
inverting the wavelet decomposition using only the wavelet
coefficients at a given scale j that correspond to the verti
cal, horizontal and diagonal subband components. We em
phasize that Eq. (4) represents an image domain analysis
and does not represent wavelet domain coefficients. The
expansion in Eq. (4) represents an octave splitting of the
raw image frequency information, and any given expansion
component can be considered as one output of j + 1 linear

networks (an orthogonal filter bank). The general ~roperties
of the transform are discussed by Daubechies,2 and the
specific methodology used here is given in detail
elsewhere.1.2

4 Random Field Analysis

The three cases and associated empirical histograms are
shown in Figs. l(a) to l(c), respectively. It is interesting to
note that for case 3, a seemingly irregular multimodal field
is derived from a simple linear transformation of a wide-

k2y

P(w)= (k2+ w2)'Y'

kexp(-klzl) ~1 (2N-I-2)!(2Izlk)/p(z) = ---- L.J ------,
22N-1(N-l)! /=0 1!(N-I-l)!

(5)

(6)
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Fig. 3 Case 2: (3= 1 expansion components d1 to ds, top to bottom (left), respectively, and associ-
ated pdf modeling (right). The empirical histograms (solid) are to be compared to the theoretical(crosses) approximations. 512x 512 pixel regions of interest are used for viewing purposes; although,all the data are used for the analysis. Points have been skipped on theoretical plots to avoid confusion.
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where z represents an arbitrary pixel. From the central limit
theorem, Eq. (6) approaches a normal distribution for large
N.

Random fields described by Eq. (6) can be generated
from the RV transformation

where Xi and Yi are identically distributed, independent,
zero mean Gaussian RVs. This is recognized as adding N
Laplace distributed RVs.28 The ko process results from lift
ing the integer N restriction and letting N= 1/2 in Eq. (7).
It is important to note that this is not represented by Eq. (6).
Likewise, the ko pdfis derived by letting y= 1/2 in Eq. (5)
followed by Fourier inversion. Gaussian RVs used in Eq.
(7) are generated with the Box-Mueller method starting
with uniformly distributed RVs.29

Our interest in fields distributed as Eq. (6) is a result of
previous mammographic image analysis. This form was
first used as an approximation for the mammographic

2N

z= ~ X2_y2L.J I I '
i= 1

(7)

wavelet expansion component modeling. Subsequent
research,4 that involved solving Eq. (1) for s(x,y) for ac
tual mammograms by making reasonable estimates of

H(f), resulted in fields that can be reasonably well ap
proximated by Eqs. (5) and (6). Other researchers have
studied the multiresolution properties of 2-D 1/f fields12,30

by analyzing the wavelet coefficient properties (or deci
mated filter outputs). Our work is different in that we ana
lyze the expansion components.

The expansion in Eq. (4) is carried out for J = 5, for each

simulation case. Figure 2 shows modeling for the case 1
field for the d1 through ds images (top to bottom), where
the corresponding N values are 2, 3, 4, 5, and 6, respec
tively. The case 2 expansion is shown in Fig. 3 with the
corresponding N values given by 2,4,6,8, and 10. For case
3, shown in Fig. 4, the corresponding N values are 2,5,7,8,
and 10. Generally for this study, we are interested in the

form of the expansion component (choosing the proper N)
and not the scaling parameter, k, in Eq. (6). Therefore, we
have not provided these values. Standard regression meth-
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Fig. 4 Continued.

ods are used to estimate the best pdf from Eq. (6). First, a
number of pdfs for different N values (1 to 15) are fit with
the standard least squares methods to a given expansion
component. Then, all of the theoretical pdfs are compared
with the data; the curve that best agrees with the data is
used as the model. The three important inferences are: (I)
the approximations appear reasonable and (II) the expan
sion components can be regular even though the process
behaves in an irregular fashion. This can be demonstrated
by combining the detail images for case 3, shown in Fig. 5
(top). To a good approximation the component modeling is
Gaussian. Figure 5 (bottom) shows the 15 image [see Eq.
(4)] and associated empirical histogram. Note that many of
the irregularities are very similar to the case 3 image; and
most importantly, (III) case 3 shows signs of irregular be
havior, note the multimodal appearance of the histogram.
Note that mammograms also behave in this fashion. This
agrees with the development provided in the Appendix,
which shows the process is not well defined for {3';?; 1.5. By
comparison, this behavior is not exhibited as much for case
2 because it is within the permitted {3values.

5 Discussion

An approximation method was used to model the expansion
components of a multiresolution wavelet analysis for the
fields studied for a particular wavelet basis. We have not
addressed the relationship with the probability modeling
and the wavelet basis. Since there are many different bases
and each wavelet basis has different frequency characteris
tics, it is safe to assume that the probability modeling
would change when changing basis, and there is evidence
that this is the case.31 In general, we found that using a
basis with fewer coefficients results in a decreased N value
for a given expansion component. We qualify this with the
understanding that we have not completed a thorough in
vestigation with a large number of wavelet bases, and this
does not agree for the Haar basis, where contrary behavior
is observed. This also indicates that better approximations
can be found by lifting the restriction on '}',although the pdf
modeling becomes more complex. Strictly, the analysis ap
plies to fields that have random phases derived from driv
ing white noise through some linear network. Preliminary

Optical Engineering, Vol. 38 No.9, September 1999 1513



Heine et al.: Multiresolution analysis of two-dimensional 1/f processes ...

0.0025

1000

60004000

500a
Pixel Intensity

-2000 0 2000
Pixel Intensity

-4000
a

-6000

0.0020

0.0000
-1000

0.0005

[ 0.0015!.
>
'0
'i) 0,0010"'

'0'''-1 ' , :' , j3.0xl0-4

f 'o ••o,~
"ii L
0;"'

Fig. 5 Addition of the five detail images (top), f5 low resolution image (bottom) and associated histo
grams for the third case (Fig. 4). The figures represent the entire noise fields. The total detail image pdf
(solid) is approximated as a normal distribution (crosses). Note the regularity of the detail representa
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evidence indicates that the random phase model applies to
mammographic images.4

This research shows that to understand the multiresolu
tion statistical nature of certain 1// processes it is beneficial
to consider the process as resulting from driving noise
through a suitable filter, and analyze the probability char
acter of the noise by solving Eq. (1). This work provides
evidence that when fields distributed as Eq. (5) or Eq. (6)
undergo certain linear transforms, such as the l/f filtering,
the resulting multiresolution expansion fields are distrib
uted (approximately) similarly with different parameters.
This comes from considering the possibility of changing
the order of the two linear operations discussed here, for
example: (a) apply the wavelet expansion to the raw field
for case I and (b) then apply the 1// filtering to each indi
vidual expansion component, which is the reverse order of
the analysis shown here but is equivalent.

It would be a bit optimistic to imply that Eq. (5) is
universal for all gray scaled images. Future work will in-

elude similar analysis for input fields distributed with other
pdfs and theoretical approximations based on a linear op
erator formalism.3

6 Appendix

Equation (1) can be expressed in the image domain as the
2-D convolution

h(x,y) **s(x,y).

By generalizing the previous one dimensional work,17,24,25

the filter h(x,y) given by

where normalization factors have been dropped. We have
forced symmetry by assuming the original I-D form gives
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radial symmetry when generalized in two dimensions. Now
the convolution expressed explicitly in Cartesian coordi
nates is given by

f [(x-u)2+(y_t)2](a-l)/2s(u,t)du dt,u,t

where the integration is carried out over the entire u-t
plane. This manipulation is best carried out in the Fourier
domain as expressed in Eq. (1). This involves finding the
FT of h(x,y), which is more easily performed by changing
to radial coordinates Z2=x2 +y2, since it possesses circular
symmetry. Letting z and 1represent radial image domain
and frequency domain variables, respectively, and changing
coordinate systems, gives

where 10 is a zero-order Bessel function. This special case
FT representation is due to the h(x,y) symmetry and by
definition the Hankel transform of za-l. Note that this in

tegral is also the Mellin transform, H(a), of 10(21Tlz)z.
The development leading to this expression can be found in
detail elsewhere.32 Dropping all constants, H is given by33

1 1

H(f)= r+1= 1/3'

with the restriction 0 < {3<3/2 (or - 1< a< 1/2). The cor
responding power spectra restriction is given by 0 < 2 {3

< 3. The integral diverges for larger values of (3 due to the
asymptotic form of 10' That is for large z, 10(z)
=Z-ll2 cos(z-1T14) which shows the upper restriction on
a. The lower restriction comes from considering the behav
ior of the integral near z =O. That is with a= -1, the inte
gral behaves as J 11z dz which has a logarithmic singularity
at z = 0, but this is not a problem since a= -1 is excluded
in the interval -1 <a<1/2. For our considerations, it is the
upper a region that is important because to a good approxi
mation mammograms fall in this outer range for many
cases in our database. As in the simulation, with (3= 1.5,
the resulting output from the filtering operation becomes
unstable. It is for this reason the cases 2 and 3 simulations

exhibit much different behavior. Although in practice, this
does not appear to be a hard limit. The irregular multimodal
histogram characteristic begins to develop somewhere in
between the case 1 and case 2 simulations. It is also inter

esting to note that repeating the experiment with different
realizations of a given s(x,y) field for {3= 1.5 results in
output fields with empirical histograms that differ signifi
cantly, and for all practical purposes are not different real
izations of the same process.
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